设为首页
收藏本站
请登录
立即注册
论坛首页
BBS
充值赞助
申请提现
提现排行榜
排行榜
Ranklist
友链申请
搜索
本版
文章
帖子
群组
用户
请
登录
后使用快捷导航
没有账号?
立即注册
友情链接
当前位置:
»
论坛首页
›
YOLO图像识别
›
前言资讯
›
谷歌人工智能技术 可将语音识别错误率降低29% ...
收藏
0
回复
谷歌人工智能技术 可将语音识别错误率降低29%
IP属地:
香港
104
0
脆脆鲨
2023-9-21 17:14:18
|
显示全部楼层
|
阅读模式
【CNMO新闻】近期,语音识别技术发展迅猛,像EdgeSpeechNet等最先进的模型能够达到97%的准确率,但即使是最好的系统偶尔也会被生僻字难倒。
为了解决这个问题,谷歌和加利福尼亚大学的科学家提出了一种方法,可以利用纯文本数据训练拼写校正模型。在预印本服务器Arxiv.org上发表的一篇论文《用于端到端语音识别的拼写校正模型》中,他们表示,在使用800字、960小时语言建模LibriSpeech数据集的实验中,他们的技术显示,相对于基准,单词错误率(WER)改善了18.6%。在某些情况下,它甚至可以减少29%的错误。
语音识别
他们写道:“目标是将一个接受了文本数据培训的模块纳入端到端框架,纠正系统所犯的错误,具体来说,我们的调查使用了不成对的数据,利用文本到语音(TTS)系统生成音频信号,这个过程类似于机器翻译中的反向翻译。”
正如论文作者所解释的那样,大多数自动语音识别(ASR)系统要训练三个组成部分:一个学习音频信号与构成语音的语言单位之间关系的声学模型,一个为单词序列分配概率的语言模型,以及一种用于对声学帧和识别的符号进行匹配的机制。所有这三者都使用一个神经网络和转录的音频-文本对,因此,当语言模型遇到语料库中不经常出现的单词时,通常会出现性能下降。
然后,研究人员开始将上述拼写校正模型纳入ASR框架,一种将输入和输出句子解码为“词组”的子词单元的模型,他们使用纯文本数据,并利用文本到语音(TTS)系统生成的音频信号来训练LAS语音识别器,这是2017年Google Brain研究人员首次描述的端到端模型,然后创建一组TTS对,最后,由他们来“教导”拼写纠正器纠正识别器的错误。
为了验证这个模型,研究人员训练了一个语言模型,生成一个TTS数据集来训练LAS模型,并产生了错误假设以训练拼写校正模型,其中包含了来自LibriSpeech数据集的4000万个文本序列。他们发现,通过纠正来自LAS的条目,语音校正模型生成的扩展输出的错误率“显著”降低了。
回复
使用道具
举报
提升卡
置顶卡
沉默卡
喧嚣卡
变色卡
千斤顶
照妖镜
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
脆脆鲨
管理员
关注
4885
主题
0
粉丝
0
关注
这家伙很懒,什么都没留下!
OCR文字识别工具和文件整合包
2024-8-28
Topaz Video AI v3.4.4 人工智能视频画质增强和修复软件
2024-8-28
VITS_fast_finetune 语音模型一键训练整合包
2024-8-28
Stable Diffusion整合包v4.9发布!解压即用 防爆显存 三分钟入门AI绘画 ☆更新 ☆训练
2024-8-28
Yolo_v8轻量版全套工具及易模块和例子支持CPU CUDA10 11
2024-8-28
发新帖
24小时热帖
Topaz Video AI v3.4.4 人工智能视频画质增
2024-08-28
VITS_fast_finetune 语音模型一键训练整合
2024-08-28
Stable Diffusion整合包v4.9发布!解压即用
2024-08-28
Yolo_v8轻量版全套工具及易模块和例子支持C
2024-08-28
AI再显神通!将大脑信号转为语音 准确率最
2023-09-20
Copyright © 2001-2025
Discuz Team.
Powered by
Discuz!
X3.5
|
网站地图