设为首页
收藏本站
请登录
立即注册
论坛首页
BBS
充值赞助
申请提现
提现排行榜
排行榜
Ranklist
友链申请
搜索
本版
文章
帖子
群组
用户
请
登录
后使用快捷导航
没有账号?
立即注册
友情链接
当前位置:
»
论坛首页
›
YOLO图像识别
›
前言资讯
›
学习效率低怎么办?谷歌科学家让人工智能边玩边学 ...
收藏
0
回复
学习效率低怎么办?谷歌科学家让人工智能边玩边学
IP属地:
香港
86
0
脆脆鲨
2023-9-22 20:18:26
|
显示全部楼层
|
阅读模式
【CNMO新闻】深度强化学习是一种利用奖励推动软件策略实现目标的人工智能培训技术,已经被用于各种会对社会规范产生影响的模型,比如创建擅长玩游戏的人工智能以及可以从泄露事故中恢复的编程机器人。但是尽管它具有很多功能,但强化学习(RL)还是有一个缺点:效率低下。培训一个策略需要在模拟或现实环境中进行大量的交互,这个过程远远超过普通人学习一个任务所需要的交互量。
人工智能
为了在视频游戏领域做出一些改进,谷歌的研究人员最近提出了一种新的算法,模拟策略学习(Simulated Policy Learning),简称SimPLe,它使用游戏模型来学习选择动作的质量策略。
谷歌的人工智能科学家Kaiser和Dumitru Erhan在相关论文中写道:“在高层次上,SimPLe是在模拟游戏环境中学习游戏行为的世界模型,并使用该模型优化策略之间的交替。这种算法背后的基本原理已经建立得非常好了,并已被用于最近许多基于模型的强化学习方法之中。”
训练人工智能系统玩游戏需要在给定一系列观察帧和命令,例如“左”、“右”、“前”、“后”的情况下预测目标游戏的下一帧。他们指出,一个成功的模型可以产生可用于训练游戏代理策略的轨迹,这将消除对游戏内序列的需要,这些序列的计算成本高昂。
在相当于持续两小时的游戏实验中,使用SimPLe调整策略的代理在两个测试游戏中获得了最高分,并产生了“近乎完美的预测”,最多可以预测未来50步。它们偶尔会难以捕捉游戏中某些物体,因而导致失败,研究人员承认它还无法达到标准RL方法的性能,但SimPLe在培训方面的效率已经提高了两倍。
回复
使用道具
举报
提升卡
置顶卡
沉默卡
喧嚣卡
变色卡
千斤顶
照妖镜
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
脆脆鲨
管理员
关注
4885
主题
0
粉丝
0
关注
这家伙很懒,什么都没留下!
OCR文字识别工具和文件整合包
2024-8-28
Topaz Video AI v3.4.4 人工智能视频画质增强和修复软件
2024-8-28
VITS_fast_finetune 语音模型一键训练整合包
2024-8-28
Stable Diffusion整合包v4.9发布!解压即用 防爆显存 三分钟入门AI绘画 ☆更新 ☆训练
2024-8-28
Yolo_v8轻量版全套工具及易模块和例子支持CPU CUDA10 11
2024-8-28
发新帖
24小时热帖
Topaz Video AI v3.4.4 人工智能视频画质增
2024-08-28
VITS_fast_finetune 语音模型一键训练整合
2024-08-28
Stable Diffusion整合包v4.9发布!解压即用
2024-08-28
Yolo_v8轻量版全套工具及易模块和例子支持C
2024-08-28
AI再显神通!将大脑信号转为语音 准确率最
2023-09-20
Copyright © 2001-2025
Discuz Team.
Powered by
Discuz!
X3.5
|
网站地图